Environmental health in emergencies and disasters

A PRACTICAL GUIDE

Edited by
B. Wisner
J. Adams
Contents

List of illustrations xi
Preface xvi
Acknowledgments xix

1. About this book 1
 1.1 Objectives 1
 1.2 Target audiences 1
 1.3 Organization of the chapters 2
 1.4 Scope 2
 1.5 Approach 3
 1.6 Glossary of terms 4

Part I. General aspects

2. The nature of emergencies and disasters 9
 2.1 Environmental health and disasters 9
 2.2 Disasters and emergencies 9
 2.2.1 Hazards and extreme events 9
 2.2.2 Disasters 10
 2.2.3 Conflict 10
 2.2.4 The effects of disasters on environmental health facilities and services 11
 2.2.5 Emergencies 12
 2.3 Vulnerability to disasters and emergencies 13
 2.3.1 The concept of vulnerability 13
 2.3.2 High susceptibility 13
 2.3.3 Low resilience 14
 2.3.4 The impact of disasters at national level 14
 2.4 Human actions that increase vulnerability to disasters 15
 2.4.1 Improper resource management 15
 2.4.2 Urbanization and vulnerability to disasters 15
 2.4.3 Rural/urban connections 16
 2.4.4 Global environmental change 17
 2.5 The disaster-management cycle 17
2.5.1 Disaster management—a developmental approach 17
2.5.2 Sustainable livelihoods and disaster management 18
2.5.3 Limitations in complex emergencies 18

2.6 Steps in disaster management 20
2.6.1 Vulnerability assessment 20
2.6.2 Prevention and mitigation 20
2.6.3 Emergency preparedness 20
2.6.4 Planning, policy and capacity building 21
2.6.5 Emergency response 21
2.6.6 Rehabilitation, reconstruction and recovery 22

2.7 Further information 22

3. Predisaster activities 24

3.1 Introduction 24
3.2 Institutional arrangements 24
3.2.1 Policy development 24
3.2.2 National and subnational disaster organizations 24

3.3 Vulnerability and capacity assessment 25
3.3.1 The purpose and process of vulnerability and capacity assessment 25
3.3.2 Hazard mapping 27
3.3.3 Vulnerability analysis of water-supply systems 28
3.3.4 Assessment of environmental health vulnerability 28
3.3.5 Describing communities, their environment and the effects of hazards 28
3.3.6 Ongoing monitoring of vulnerability 30
3.3.7 Environmental health review of development policies and projects 30

3.4 Prevention and mitigation 30
3.4.1 Reducing community vulnerability through long-term environmental health improvements 30
3.4.2 Environmental safety regulations 31
3.4.3 Reducing the vulnerability of environmental health infrastructure 31
3.4.4 Protecting other facilities 32

3.5 Preparedness and planning 32
3.5.1 The national emergency planning process 32
3.5.2 A general model for disaster-preparedness planning 33
3.5.3 Strategic plans and operational plans 36
3.5.4 Participatory methods in planning 36

3.6 Institutional learning and memory 37
3.6.1 Evaluation of emergencies and disasters 37
3.6.2 Vulnerability analysis of major projects 37
3.6.3 Using rules and regulations concerning environmental health and hazards 38

3.7 Warning indicators 38
3.7.1 Early warnings 38
3.7.2 Slow-onset hazards 38
3.7.3 Hazards with moderate warning time
3.7.4 Warning of industrial accidents
3.7.5 Warning of refugee movements
3.8 Further information

4. Emergency response
4.1 Assessments
 4.1.1 Purpose of emergency assessments
 4.1.2 Process of assessments
 4.1.3 Field assessment techniques
 4.1.4 Organizing an emergency assessment
4.2 Evacuation
 4.2.1 Disaster warnings and emergency instructions
 4.2.2 Organized evacuation
 4.2.3 Spontaneous evacuation
 4.2.4 Environmental health services on evacuation routes
 4.2.5 Environmental health problems associated with evacuations
 4.2.6 Influencing settlement in evacuations
 4.2.7 Strengthening services in host communities
 4.2.8 Problems with temporary emergency settlements
4.3 Environmental health measures in the emergency phase
 4.3.1 General objective and activities
 4.3.2 Priorities for emergency response
 4.3.3 Hospitals and relief centres
 4.3.4 Environmental health in search and rescue operations
4.4 Organization of environmental health activities during emergencies
 4.4.1 The place of environmental health in the organization of emergency activities
 4.4.2 Emergency field teams for assessment and initial response
 4.4.3 Other specialized emergency environmental health functions
 4.4.4 Coordination of emergency response activities
4.5 Personnel management in emergencies
 4.5.1 Professional functions
 4.5.2 Flexibility in the use of human resources
 4.5.3 Cooperation with the private sector
 4.5.4 Working with volunteers
 4.5.5 Facilities for emergency personnel
 4.5.6 Support for specialist activities
 4.5.7 Subsistence needs of personnel
 4.5.8 Security and safety needs of personnel
 4.5.9 Psychological needs of personnel
 4.5.10 Administrative support for personnel
4.6 Equipment and supplies
 4.6.1 Types of equipment needed
4.6.2 Procurement 58
4.6.3 Specifications 59
4.6.4 Storage and distribution 59
4.7 Transportation and logistics 59
 4.7.1 Types of vehicle required 60
 4.7.2 Sources and numbers of vehicles required 60
 4.7.3 Repairs and maintenance 61
 4.7.4 Road operations: transportation logistics in field operations 61
 4.7.5 Air operations 61
 4.7.6 Other modes of transportation 62
 4.7.7 Pooling of transportation services 62
 4.7.8 Vehicle priorities 62
 4.7.9 Field logistics systems 62
4.8 Telecommunications 63
 4.8.1 Types of telecommunications equipment 63
 4.8.2 Sources of radio communications 64
 4.8.3 Developments in telecommunications 64
4.9 Financial procedures 65
4.10 Rules, standards and guidelines in disaster response 65
 4.10.1 Importance of rules and guidelines in emergencies 66
 4.10.2 Basic principles for creating rules for emergencies 66
 4.10.3 Special rules in areas of high potential public-health risk 67
 4.10.4 Rules concerning foreign relief workers 67
 4.10.5 International standards and codes of conduct for humanitarian response 67
4.11 International assistance 68
 4.11.1 In-country coordination 68
 4.11.2 Forms and functions of international assistance 69
 4.11.3 Integrating international staff and local specialists 69
 4.11.4 Guidelines on employment of international assistance teams 69
4.12 Further information 70

5. Recovery and sustainable development 71
 5.1 From disasters to development 71
 5.1.1 The transition from relief to recovery 71
 5.1.2 Sustainable development 71
 5.1.3 Increasing individual and institutional capacity 72
 5.2 Assessment for recovery 72
 5.2.1 Reconstruction of housing 73
 5.2.2 Reconstruction of water-supply and sanitation systems 75
 5.2.3 Secondary damage assessment 75
 5.2.4 Secondary vulnerability assessment 76
 5.3 Recovery planning 77
 5.4 Recovery in different contexts 78
 5.4.1 Self-sheltering or short-term evacuees 78
 5.4.2 Resettlement 78
5.4.3 Rehabilitation and reconstruction for long-term camp residents

5.4.4 Chronic conflict situations

5.5 Post-disaster environmental health activities and sustainable development

5.5.1 Vulnerability reduction

5.5.2 Specific implications of sustainable development in environmental health planning

5.6 Further information

Part II. Technical aspects

6. Shelter and emergency settlements

6.1 Introduction

6.2 Assistance to self-sheltering populations

6.3 Short-term shelter in existing buildings

6.4 Site selection and arrangement of emergency settlements

6.5 Longer-term issues for emergency settlements

6.6 Community participation in environmental health management

6.7 Further information

7. Water supply

7.1 Water-supply preparedness and protection

7.1.1 Establishing and protecting small-scale decentralized supplies

7.1.2 Establishing and protecting large-scale, centralized supplies

7.1.3 Preparation for displacement emergencies

7.2 Emergency water-supply strategy

7.2.1 Situations demanding an emergency water-supply response

7.2.2 Emergency response strategy

7.2.3 Rural emergencies

7.2.4 Emergency water-supply measures in urban areas

7.2.5 Supplies for affected periurban areas

7.2.6 Short-term displacement and temporary shelters

7.2.7 Long-term emergency settlements

7.3 Assessment

7.3.1 Assessment of damage and available water resources

7.3.2 Needs assessment

7.3.3 Needs and standards

7.4 Emergency water-supply techniques

7.4.1 Water sources

7.4.2 Water quality and water testing in emergencies

7.4.3 Treatment of emergency water supplies

7.4.4 Water movement, storage and distribution

7.4.5 Prepackaged water kits

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.6</td>
<td>Facilities for personal hygiene</td>
<td>124</td>
</tr>
<tr>
<td>7.5</td>
<td>Operation and maintenance</td>
<td>126</td>
</tr>
<tr>
<td>7.6</td>
<td>Further information</td>
<td>126</td>
</tr>
<tr>
<td>8.</td>
<td>Sanitation</td>
<td>127</td>
</tr>
<tr>
<td>8.1</td>
<td>Human waste and health</td>
<td>127</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Faeces</td>
<td>127</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Urine</td>
<td>127</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Sullage</td>
<td>127</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Solid waste</td>
<td>128</td>
</tr>
<tr>
<td>8.1.5</td>
<td>The importance of hygiene behaviour</td>
<td>128</td>
</tr>
<tr>
<td>8.2</td>
<td>Strategy for excreta disposal in emergencies</td>
<td>128</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Situations demanding an emergency excreta-disposal response</td>
<td>128</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Gradual improvement</td>
<td>130</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Technology choice</td>
<td>130</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Assessment</td>
<td>132</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Standards</td>
<td>132</td>
</tr>
<tr>
<td>8.3</td>
<td>Techniques for excreta disposal in emergencies</td>
<td>132</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Defecation fields</td>
<td>133</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Shallow trench latrines</td>
<td>134</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Deep trench latrines</td>
<td>134</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Simple pit latrines</td>
<td>136</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Other types of latrine</td>
<td>136</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Site selection for latrines</td>
<td>138</td>
</tr>
<tr>
<td>8.3.7</td>
<td>Management of excreta disposal facilities</td>
<td>138</td>
</tr>
<tr>
<td>8.4</td>
<td>Disposal of wastewater (sullage)</td>
<td>139</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Assessment of the problem and design of the response</td>
<td>139</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Wastewater disposal techniques</td>
<td>139</td>
</tr>
<tr>
<td>8.5</td>
<td>Management of refuse</td>
<td>142</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Assessment of the problem and design of the response</td>
<td>142</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Refuse storage</td>
<td>142</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Refuse collection and transport</td>
<td>143</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Treatment and disposal</td>
<td>143</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Disposal of rubble</td>
<td>144</td>
</tr>
<tr>
<td>8.5.6</td>
<td>Medical wastes</td>
<td>145</td>
</tr>
<tr>
<td>8.6</td>
<td>Further information</td>
<td>147</td>
</tr>
<tr>
<td>9.</td>
<td>Food safety</td>
<td>148</td>
</tr>
<tr>
<td>9.1</td>
<td>The importance of safe food</td>
<td>148</td>
</tr>
<tr>
<td>9.2</td>
<td>Food control</td>
<td>149</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Food control measures</td>
<td>149</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Salvageable and unsalvageable foods</td>
<td>149</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Inspection of food businesses</td>
<td>151</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Control of donated or imported food</td>
<td>151</td>
</tr>
<tr>
<td>9.3</td>
<td>Food safety and nutrition</td>
<td>151</td>
</tr>
<tr>
<td>9.3.1</td>
<td>General considerations</td>
<td>151</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Providing dry rations for household cooking</td>
<td>151</td>
</tr>
</tbody>
</table>
9.3.3 Mass-feeding centres 153
9.3.4 Therapeutic-feeding centres 154
9.3.5 Breastfeeding and breast-milk substitutes 154
9.4 Public education and information 156
9.5 Safe and hygienic warehouse management 157
9.6 Further information 157

10. Vector and pest control 158
10.1 The importance of vector and pest control in disasters and emergencies 158
10.1.1 Assessment 159
10.2 Disease control and nuisance control 159
10.2.1 Disease control 159
10.2.2 Nuisance control 159
10.3 Available control measures 160
10.3.1 Density reduction 160
10.3.2 Longevity reduction with pesticides 160
10.4 Environmental management for vector and pest control 163
10.4.1 The benefits of environmental management 163
10.4.2 Environmental management measures for vector and pest control 163
10.5 Hygiene and personal protection 164
10.5.1 The importance of hygiene and personal protection 164
10.5.2 Repellents 164
10.5.3 Impregnated materials for malaria control 166
10.5.4 Disinfection and disinfestation 166
10.6 Further information 166

11. Control of communicable diseases and prevention of epidemics 168
11.1 The importance of communicable diseases in emergencies and disasters 168
11.2 Measures for controlling communicable diseases and epidemics 169
11.2.1 Preparedness and prevention 169
11.2.2 Public-health surveillance 171
11.2.3 Outbreak control 172
11.3 The control of cholera: an example 173
11.4 Further information 174

12. Chemical incidents 175
12.1 Types of chemical incident 175
12.2 The health effects of chemical incidents 175
12.2.1 Toxic effects of chemicals 175
12.2.2 Public-health effects of chemicals 175
12.3 Operational planning and preparedness 176
12.3.1 Multidisciplinary public-health working arrangements 177
12.3.2 Vulnerability assessment 177
12.3.3 Local incident surveillance and environmental monitoring 178
12.3.4 Baseline health assessment
12.3.5 Health impact assessment
12.3.6 Baseline environmental assessment
12.3.7 Liaison with the local community
12.3.8 Public-health plans for chemical incidents
12.3.9 Databases
12.3.10 Reducing the probability of incidents
12.3.11 Reducing the health risks of incidents
12.3.12 Establishing routine procedures
12.3.13 Conducting exercises and training
12.3.14 Conducting national chemical incident surveillance and contributing to international chemical incident surveillance
12.4 Dealing with chemical incidents
12.4.1 Alerting the health-care services
12.4.2 Best outcome assessment/estimation
12.4.3 Information and public warnings—communication skills
12.4.4 Advice on protection
12.4.5 Sheltering or evacuation/removal
12.4.6 Other restrictions to protect health
12.4.7 Organizing registers and samples
12.4.8 Collection of samples—biomarkers of chemicals and their effects
12.4.9 Environmental monitoring
12.5 Assessing the impact on public health
12.5.1 Health impact assessment
12.6 Further information

13. Radiation emergencies
13.1 Health consequences of radiation
13.2 Radiation from nuclear incidents
13.3 International and local response to a major nuclear accident in compliance with the Convention on Early Notification and Assistance Convention
13.4 The role of WHO in a radiation emergency
13.5 Mitigation of effects
13.6 Inadvertent exposure to radioactive material
13.7 Further information

14. Mortuary service and handling of the dead
14.1 Recovery of the dead
14.2 Organization of the mortuary
14.3 Identification of the dead
14.4 Handling the dead
14.5 Ceremonial aspects
14.6 Further information
List of illustrations

Boxes

Chapter 2
Box 2.1 The disaster–development connection. 15
Box 2.2 Health effects of global environmental change. 17
Box 2.3 The relief–development transition following drought and floods in the Sudan. 19

Chapter 3
Box 3.1 Using survey data to avoid secondary hazards. 29
Box 3.2 Responsibility for environmental health in disasters and emergencies. 34
Box 3.3 Community risk assessment: a powerful training tool. 36
Box 3.4 Risk perception. 38

Chapter 5
Box 5.1 Recovery and development in Mexico City. 72
Box 5.2 Self-help reconstruction in Guatemala. 74
Box 5.3 Incorporation of safety features during reconstruction. 74
Box 5.4 Rehabilitation of livelihood in Somalia. 77
Box 5.5 Importance of cultural values in successful resettlement. 77
Box 5.6 People's resistance to resettlement. 79
Box 5.7 Meeting the challenges of Mount Pinatubo: successful resettlement in the Philippines. 79
Box 5.8 Linking relief and development in Mozambique. 81

Chapter 7
Box 7.1 Water emergency in Puerto Limón, Costa Rica. 98
Box 7.2 Safety precautions for digging wells. 110
Box 7.3 Contracting out borehole drilling. 111
Box 7.4 Use of portable water-testing kits after hurricane Joan in Nicaragua. 117

Chapter 8
Box 8.1 Excreta control and small children. 133

Chapter 9
Box 9.1 Golden rules for safe food preparation. 152
Box 9.2 Facilities needed at mass-feeding centres. 155
Box 9.3 Specific measures required in therapeutic-feeding centres. 156
Chapter 10
Box 10.1 Vectors and diseases likely to be present in emergency settlements. 159
Box 10.2 Pesticide application methods and equipment for emergencies. 161
Box 10.3 Characteristics and advantages of common insecticide formulations used in disasters. 162

Chapter 11
Box 11.1 Flooding in the Czech Republic. 169
Box 11.2 Monitoring mortality among refugees in eastern Zaire. 169
Box 11.3 Epidemic cholera in refugee camps. 174

Chapter 13
Box 13.1 Stable iodine prophylaxis. 194
Box 13.2 Role of the local authority. 195
Box 13.3 Poverty and radiation exposure in Brazil. 196

Chapter 14
Box 14.1 Equipment for mortuary services in major disasters. 200

Chapter 15
Box 15.1 Spontaneous organization by Salvadoran refugees. 206
Box 15.2 Methods of identifying women leaders. 208

Chapter 16
Box 16.1 The challenge of complex emergencies. 217

Figures
Chapter 2
Figure 2.1 Disaster vulnerability as a function of exposure to hazards and threats, and reduced capacity to cope and recover. 14
Figure 2.2 Developmental considerations contributing to all elements of the disaster-management cycle. 19
Figure 2.3 Development temporarily interrupted by sudden disaster. 19

Chapter 3
Figure 3.1 Vulnerability reduction. 25
Figure 3.2 The hierarchy of disaster-management plans. 33

Chapter 4
Figure 4.1 Specimen organization chart for emergency environmental health activities. 51
Figure 4.2 Health organization for emergencies and disasters. 52

Chapter 7
Figure 7.1 Reinforcement of water pipes crossing streams or gullies. 94
Figure 7.2 Needs and resources assessment: general considerations for planning an emergency water-supply system. 101
Figure 7.3 Water demand under normal and emergency conditions. 103
Figure 7.4 Choosing a water source and treatment options for a short-term emergency water supply. 105
Figure 7.5 Use of fencing to demarcate human and animal watering places. 106
Figure 7.6 A protected spring. 107
Figure 7.7 Improvement of water hole with concrete caisson. 107
Figure 7.8 Improving an existing well with puddled clay. 108
Figure 7.9 A typical protected dug well installation. 108
Figure 7.10 Methods of improving the output of wells. 109
Figure 7.11 Connected wells. 110
Figure 7.12 Construction of a qanat or falaj. 111
Figure 7.13 Design of Somali hafir. A: overall plan; B: detail in perspective. 112
Figure 7.14 Water intake systems for lakes or rivers. 113
Figure 7.15 Subsurface dam and infiltration gallery. 114
Figure 7.16 Simple household storage system for removal of sediment. 118
Figure 7.17 A temporary water-distribution stand with three taps. 122
Figure 7.18 Put-and-take water heater. 125

Chapter 8
Figure 8.1 Decision tree for excreta disposal in refugee camps. 131
Figure 8.2 Open defecation field. 133
Figure 8.3 A trench defecation field with guidance markers. 134
Figure 8.4 Shallow trench latrine. 135
Figure 8.5 Deep trench latrine. 135
Figure 8.6 Various types of pit latrine. 137
Figure 8.7 Dispersal of pollution from its source. 139
Figure 8.8 Unlined (A) and lined (B) soakage pits with effluent inlets. 140
Figure 8.9 Grease trap. 141
Figure 8.10 Simple basket incinerator made from a discarded oil drum. 146
Figure 8.11 Balleul single-chamber incinerator. 147

Chapter 10
Figure 10.1 Simple steamer for clothing. 167

Chapter 11
Figure 11.1 Specimen weekly surveillance summary sheet. 172

Chapter 12
Fig. 12.1 Pathways of exposure. 176

Chapter 15
Figure 15.1 The process of participatory action. 206

Tables
Chapter 2
Table 2.1 Common levels of impact of natural disasters on environmental health services. 11
Table 2.2 Selected cities exposed to natural hazards. 16
Chapter 3
Table 3.1 Policy issues and recommended options. 26
Table 3.2 Principal community characteristics determined in vulnerability analysis. 29

Chapter 4
Table 4.1 Numbers of environmental health personnel needed in an emergency. 51

Chapter 7
Table 7.1 Typology of water sources. 104
Table 7.2 Preparation of 1% chlorine stock solution. 120
Table 7.3 Disinfecting water using a 1% stock solution. 120

Chapter 9
Table 9.1 Control measures for ensuring food safety. 150

Chapter 10
Table 10.1 Examples of hygiene practices and personal protection methods against selected disease vectors, diseases and nuisance pests. 165

Chapter 11
Table 11.1 Diseases affecting displaced populations in disasters. 170

Chapter 12
Table 12.1 Organizations and groups involved in planning for, and managing, chemical incidents. 177
Table 12.2 Different types of epidemiological study. 190

Chapter 13
Table 13.1 International Nuclear Event Scale (INES), used to inform the public about the severity of events at nuclear facilities. 192
Table 13.2 Roles of WHO and REMPAN in a radiation emergency. 194

Chapter 15
Table 15.1 Opportunities and needs for community participation and hygiene promotion in disaster management. 205
The WHO Guide to sanitation in natural disasters (Assar, 1971) summarized the essential aspects of environmental health management in disasters. These included the provision of emergency water and sanitation services; the burial or cremation of the dead; vector and pest control; food hygiene; and the assessment of the danger of epidemics following emergencies and disasters, etc. Thirty years later these aspects remain essential, though the needs, challenges and opportunities are greater.

This new book deals not only with emergency response, but also with measures designed to reduce the impact of disasters on environmental health infrastructure, such as water supply and sanitation facilities. It also aims to strengthen the ability of people to withstand the disruption of their accustomed infrastructure and systems for environmental health (e.g. shelter, water supply, sanitation, vector control etc.) and to recover rapidly.

What has not changed since the earlier guide was published are the high social and financial costs of emergencies and disasters, and the associated human tragedy, as well as the need for a rapid, efficient, well-prepared response to save life and to restore and maintain a healthy environment. As in previous emergencies, these realities and imperatives remained the same for the earthquakes in Mexico City and Gujarat, the eruption of Mount Pinatubo, the floods in Mozambique and the siege of Sarajevo.

The physical nature of the extreme natural events that can trigger disaster also has not changed. Hagman et al. (1984) and other researchers in the 1980s concluded that the cause of the increase in loss and suffering due to disasters was not that nature had become more violent, but that people had become more vulnerable. Nearly 20 years later, socioeconomic and political factors, such as mass migrations, urbanization, the destruction of natural resources and war continue to account for growing losses from disasters.

There is no evidence that the physical processes causing geological hazards such as earthquakes and volcanoes have altered. However, evidence increasingly indicates that global climatic change related to human activities is affecting human well-being and health (McMichael et al., 1996). And because more people live in exposed places with fewer resources to fall back on, climatic hazards such as floods, hurricanes, wildfires and droughts have a greater impact than in the past. The 1997–1998 El Niño event was the strongest ever recorded and the number of hydrometeorological disasters since 1996 has more than doubled (International Federation of Red Cross and Red Crescent Societies, 2001). If these trends continue, the rise in sea-level will soon have to be added to the factors making many people’s lives more hazardous.

While it is too early to judge the full impact of global environmental changes, it is clear that people’s vulnerability to disasters has changed. A commitment to economic growth at any cost has brought with it serious health consequences due to increasing poverty and declining living standards for many (Cooper Weil et al., 1990; Warford, 1995) and degradation of the built and natural environments (Cruz & Repetto, 1992). Poverty has often resulted in the misuse of natural resources, causing land degradation (deforestation, destruction of wetlands and desertification) and decreasing food
security. In certain parts of the world, high rates of population growth, sometimes combined with ethnic strife, have increased the pressure on urban and rural livelihood systems already weakened by the negative spiral of increasing poverty and decreasing environmental quality.

In a growing number of mega-cities, environmental health conditions are poor at the best of times and catastrophic at times of emergencies. As people try to find places to live in these crowded cities, they occupy increasingly dangerous places—for example, on steep, unstable slopes, in flood plains and near hazardous factories (Mitchell, 1996).

Rapid industrialization and new technologies have produced new hazards. The severity and frequency of technological emergencies have increased. With the proliferation of nuclear power and chemical plants over the last few decades, disasters on the scale of Chernobyl or Bhopal cannot be ruled out.

Political turbulence in many regions of the world has also increased the numbers of refugees and displaced persons fleeing complex emergencies and disasters, who often congregate in large camps where environmental health measures are insufficient. Their vital needs are urgent and massive. As a result, aid agencies are increasingly forced to challenge the orthodox distinctions between development and relief in the attribution of roles among government and nongovernmental organizations (Roche, 1994). In addition, global changes (environmental, economic and political) make an integrated approach to emergency management necessary.

The early 1970s were a watershed in international relief. Within a short period, international agencies had to deal with three large-scale disasters: civil war, causing famine in Biafra; an earthquake in Peru; and a cyclone in Bangladesh (East Pakistan at the time). Lessons were learned about planning and organization that began a new era in the scientific study of emergencies and disaster management. It is now possible to summarize this extensive experience and draw lessons for the environmental health management of emergencies.

During this period of rapid accumulation of international experience with emergency relief and recovery, new management processes were created and scientific and technological advances have begun to aid emergency management. Examples include the use of satellite images, positioning systems and communication aids to warn of disasters early and to coordinate relief. While many of the environmental health principles and actions discussed in this book are old and well established, some technologies such as prefabricated, portable water systems have come into use more recently.

In addition, more professionals are now aware of the links between emergencies, the environment and development. The distribution of goods and the reestablishment of services essential for human survival are no longer considered adequate responses to an emergency. Today, greater care is taken to avoid creating unnecessary dependence among affected communities and there is greater emphasis on supporting people to rebuild and recover by their own efforts after a disaster.

Over the past decade, a consensus has developed concerning the potential effectiveness of citizen and community participation in emergency management. It is easier now to mobilize such participation because of changes in the development models of the past 30 years. Rapid urban growth has brought a new generation of citizen-based organizations and more professional and responsive municipal governments. Citizen environmental and health activism has provided the basis for community participation in risk reduction. In a related development, women have taken on more public roles in society and their vital contributions at all stages of the disaster-management cycle have begun to be recognized.

Because of the experience with emergencies over the last 30 years, there exists today a greater political will to plan and to act strategically to prevent or reduce the impact of disasters and to meet humanitarian needs. A milestone in disaster management was
reached with the declaration in 1990 of the International Decade for Natural Hazard Reduction. Also significant for preventing disasters and reducing their impact was the work of the United Nations Conference on Environment and Development (held in Rio de Janeiro in 1992) and the United Nations Conference on Human Settlements (Habitat II, held in Istanbul in 1996).

On the other hand, there still is a large gap between policy commitment and implementation. Many donors still provide far too little support for strengthening emergency preparedness and for preventing disasters. Far worse is the “humanitarian gap.” During the 1980s, development assistance to less-developed countries actually decreased (International Federation of Red Cross and Red Crescent Societies, 1993a) and fell by a further 11% in real terms between 1991–2000 (International Federation of Red Cross and Red Crescent Societies, 2001). Since there is a clear connection between successful development and increased protection from hazards, much more needs to be done.

While the number of people affected by disasters, excluding war, varies tremendously from year to year, the general trend is upwards. An average of 147 million people per year were affected by disasters between 1981–1990, but this increased to an average of 211 million people per year between 1991–2000 (though fewer deaths were recorded). The last 30 years’ work with disasters demonstrates that much of the resulting suffering is preventable (International Federation of Red Cross and Red Crescent Societies, 1996). This book shows how, in a technical area like environmental health, even small efforts in planning and preparedness can yield great benefits in terms of preventing needless loss.

This book is intended to serve as a practical guide, calling attention to the need to link emergencies, disasters and development, not only in policy statements, but in practical ways. The book identifies physical and social factors and processes determining disaster vulnerability and offers the reader a range of vulnerability-reduction options in development and disaster mitigation. The book covers the main relief and response technologies for a range of natural and technological disasters, and deals with community participation, health education, training and other social aspects relevant to the protection of health and the environment in emergencies and disasters.
Acknowledgments

The World Health Organization (WHO), through its departments of Protection of the Human Environment (PHE) and Emergency and Humanitarian Action (EHA), the International Federation of Red Cross and Red Crescent Societies (IFRC), and the United Nations High Commissioner for Refugees (UNHCR) would like to thank Ben Wisner, Chief editor of this publication, former director of International Studies at California State University at Long Beach, USA, and the Co-editor John Adams, Bioforce, France, for their excellent work. Rudy Slooff, retired staff member of the Environmental Health Division, WHO and short-term policy consultant at the International Decade for Natural Disaster Reduction, should be especially thanked for chairing this project from 1991–1998 and for helping to make this publication a reality. Without his strong leadership, great commitment and effective contribution during the preparation of this book, and his efforts to involve the agencies and experts that contributed to this process over more than a decade, this publication would not have been possible.

José Hueb from WHO should be thanked for his technical inputs and for coordinating the final phases of technical revision and preparation of the book.

The sponsor organizations and editors would like to thank the following: the Directorate-General for International Cooperation of the Netherlands government and the German Fund for Technical Cooperation for their financial and material support in the early days of work on this book.

Although it would not be possible to list all the people who have been involved, the following should be thanked for their contributions:

For significant text contributions: R. Bos, Geneva, Switzerland; A. Cantanhede, Lima, Peru; Gary Coleman, Cardiff, UK; J. Escudero, Buenos Aires, Argentina; J. Falcón, Lima, Peru; A. Girling, Harlestone, England; K. Gutschmidt, Geneva, Switzerland; L. Kheifets, Geneva, Switzerland; C. Osorio, Lima, Peru; S. Palmer, Cardiff, UK; M. Repacholi, Geneva, Switzerland; C. Roy, Melbourne, Australia; L. Sandoval, Lima Peru; M. Simpson-Hebert, Colorado, USA; R. Sloof, Geneva; W. Solecik, Monclair, NJ, USA; R. Stephenson, London England; S. Tharratt, Sacramento, CA, USA; and D. Warner, Washington, DC, USA.

For other text contributions: L. van Drunen, Geneva, Switzerland; B. Kriz, Prague, Czech Republic; and R. Ockwell, Ferney-Voltaire, France.
For substantial review comments: A. Abastable, Oxford, England; H. Abouzaid, Cairo, Egypt; E. Anikpo, Brazzaville, Republic of the Congo; H. Bakir, Jordan; J. Bartram, Geneva, Switzerland; M. Birley, Liverpool, England; S. Cairncross, London, England; M. Courvallet, San José, Costa Rica; P. Deverill, New Delhi, India; M. Gerber, Atlanta, GA, USA; K. Khosh-Chashm, Cairo; J. V. Kreysler, Geneva, Switzerland; P.R. Leger, Wheaton, MD, USA; E. Lohman, Enschede, Netherlands; E. K. Noji, Atlanta, GA, USA; F. M. Reiff, Washington, DC, USA; L. Roberts, Atlanta, GA, USA; H. Sandbladh, Geneva, Switzerland; D. Sharp, Suva, Fiji; G. Shook, San Bernardino, CA, USA; F. Solsona, Lima, Peru; P. Tester, Beaufort, NC, USA; and P. Walker, Boston, USA.

For substantial material support and encouragement: A. Basaran, Manila, Philippines; F. Cuny, Dallas, TX, USA; B. Fawcett, Oxford, England; P. R. Garcia, Quito, Ecuador; K. Kresse, San José, Costa Rica; A. Loretta, Geneva, Switzerland; J. McCusker, Amherst, MA, USA; A. Oliver-Smith, Gainesville, FL, USA; M. Tegegne, Geneva, Switzerland; S. van Voorst tot Voorst, the Hague, Netherlands; and E. Williams, Conway, MA, USA.

Sarah Balance and Kevin Farrell should be thanked for the editorial work which improved considerably the structure and coherence of the book and made it according to the editorial rules of WHO. A. Kofahi and M. Malkawi, Amman, Jordan, should be thanked for their help in preparing the illustrations used in this book.

This has been a long and rich process of updating and compiling the experience of many scientists and practitioners. It is hoped that this sequel to Assar’s 1971 guide is worthy of all the effort, energy and support received throughout this process.