ANNEX 1

FREQUENCIES OF SAMPLING AND SANITARY INSPECTION

Table 1. Frequencies of Sampling - Urban Systems **Physical-Chemical Parameters in the Distribution Network** (samples per year)

	Sumply areas	Sampling frequency			
Parameters	Supply areas (population supplied)	Red	Standard		
	(population supplied)	Ground	Surface		
pH Turbidity Total hardness Alkalinity	<500 501-5,000 5,001-10,000 10001-24,000 24,001-50,000	1 3 4 6 1 /4,000 inhab	2 6 9 12 1 /2,000 inhab	6 12 18 24 1 /1,000 inhab	

Table 2. Frequencies of Sampling - Urban Systems **Bacteriological Parameters in the Consumer Network**

(samples per year)

Parameters	Supply areas (population served)	Sampling frequency (standard)
Total coliforms Thermotolerant coliforms E. coli	<500 500-5,000 5,001-10,000 10,001-24,000 24,001-50,000	6 12 18 24 1 /1,000 inhabitants

Table 3. Frequencies of Sampling - Urban Systems Physical-Chemical A Parameters in the Outlets of the Treatment Plant, **Groundwater Sources and Service Reservoirs** (samples per year)

	Volume of water supplied per	Sampling frequency			
Parameters	day or stored	Red	Standard		
	(m ³)	Ground	Surface	Standard	
pН)				
Turbidity					
Color					
Odor	< 2,000	4	4	4	
Taste	2,001-6,000	4	5	6	
Nitrate	6,001 - 12,000	4	6	12	
Nitrite	>12,000	6	12	24	
Iron					
Manganese					
Aluminum)				

Table 4. Frequencies of Sampling - Urban Systems Physical-Chemical B Parameters in the Outlets of the Treatment Plant, Groundwater Sources and Service Reservoirs

(samples per year)

Denometons	Sampling fre	equency (standard)
Parameters	Ground	Surface
Dry residual)	
Chloride		
Sulphate		
Calcium		
Magnesium		
Sodium		
Fluoride		
Total hardness		
Alkalinity		
Copper	\ \	
Zinc	(3	12
Lead		
Arsenic		
Barium		
Cadmium		
Cyanide		
Total chromium		
Mercury		
Selenium)	
Phenols	-	

Table 5. Frequencies of Sampling - Urban Systems Bacteriological Parameters in the Outlets of the Treatment Plant, Groundwater Sources and Service Reservoirs (samples per year)

Parameter	Volume of water supplied per day or stored	Sampling frequency	
	(m ³)	Reduced	Standard
Total coliforms	<2,000		26
	2,001-6,000	26	52
Thermotolerant coliforms E. coli	6,001-12,000	52	104
E. COII	>12,000	104	208

Table 6. Sampling Frequencies – Rural and Periurban Systems (samples per year)

Parameter	Population supplied	Number of samples	Sampling frequency Standard
Treatment plant and sources of groundwater Physical chemical analysis		One sample per source	Surface water every 2 years Groundwater every 5 years
Service reservoirs PH Turbidity Thermotolerant coliforms		One sample per component	3 per year
Distribution network PH Turbidity Thermotolerant coliforms	< 1,000 1,001 – 2,000 2,001 – 5,000	3 4 6	Annual Annual Annual

Table 7. Frequency of Sanitary Inspections of the Treatment Plant and System Components (inspections per year)

(inspections per year)

	Volume of water supplied or	Sampling frequency		
Area	stored (m ³)	Reduced	Normal	
	<2,000		3	
Lishan	2,001 - 6,000	3	6	
Urban	6,001 - 12,000	6	12	
	>12,000	12	24	
Rural			2	

Standard condition. Number of samples that the supplier should normally take from the supply areas.

Reduced condition. Number of samples to be taken when, after a given number of years (usually three), the parameters comply with the values stipulated in the water quality standard.

For supply areas or service reservoirs that supply or store a combination of groundwater and surface water, the Tables corresponding to surface water should be applied.

ANNEX 2

INFORMATION REQUIRED FOR PLANNING A WATER QUALITY CONTROL PROGRAM

- I. Information Required for Planning a Water Quality Control Program
- 1. Input Information
- A. Components

Component	Name	Code	Place	Operat. Status	Volume (m ³ /d)	Depth (m)	Pumping power
Source							
Surface	Х	Х	X	Х	X		
Ground							
Well	Х	Х	X	Х	X	X	X
Gallery	Х	Х	X	Х	X		
Spring	X	X	X	X	X		
Treatment plants	X	X	X	X	X		
Components							
Storage reservoir	Х	X	X	Х	Х		
Distributing Reserv.	Х	Х	X	Х	X		
Pump station	Х	Х	X	Х	Х		
Tank	Х	Х	X	Х	X		
Pressure-relief box	Х	Х	X	Х	X		
Well	Х	Х	X	Х	X	X	X
Gallery	Х	Х	X	Х	X		
Spring	X	X	X	X	X		

 Table 1. Input Information. Components

B. Supply Areas

Table 2. Supply Areas

Areas	Medium to large suppliers	Supply Rural or periurban
Region (name)	Х	Х
District	Х	Х
Supply area (name)	Х	Х
Total population	Х	Х
Population served	Х	Х
Source		
Surface	Х	Х
Ground	Х	X
Mixed	Х	Х
Components		
Storage reservoir	Х	X
Distributing reservoir	X	Х
Pump station	Х	Х
Tank	Х	Х
Pressure-relief box	Х	Х
Well	X	Х
Gallery	Х	Х
Spring	Х	Х
Level of service		
User connection	X	X
Public faucets	X	X
Tank trucks	Х	X
Artesian wells		Х

C. Standards

Table 3. Standards Water Quality (Limits and Exceptions)

Parameter	Unit C	Concentration	Exception		
rarameter	Unit	Concentration	Legal Dispositive	Date	Concentration
Arsenic	mg/L as As	0,005	N/A	N/A	N/A
Lead	mg/L as Pb	0,01	N/A	N/A	N/A
Cadmium	mg/L as Cd	0,003	N/A	N/A	N/A
Sulphate	mg/L as SO ₄ -	200	Directiva 48	11/12/00	250
Chloride	mg/L as Cl ⁻	250			
Nitrate	mg/L as NO ₃ ⁻	50			
Iron	mg/L as Fe	0,3			

D. Sampling Forms

D1 Distribution Network

Sample number	Supply area
Date	Time
Address	Neighborhood
Sampling place	Continuity
Network	Hours per day
Home	Days per week
Sampling point	
Home	
School	Chlorine residual
Public office	pH
Shop, store	Turbidity
Food industry	
Other industries	
Type of sample	Sampler
First	
Confirmation	

Table 4. Sampling Forms. Distribution Network

D2 Components

Table 5. Sampling Forms. Components

Sample number	Code	
Date	Time	
Sampling point	Type of sample	
Storage reservoir	First	
Distributing reservoir	Confirmation	
Pump station	Chlorine residual	
Tank	pH	
Pressure-relief box	Turbidity	
Well		
Gallery		
Spring		
Comments:	Sampler	

D3 Sources and Treatment Plants

Table 6. Sampling Forms. Sources and Treatment Plants

Sample number	Code	
Date	Time	
Sampling point	Type of sample	
Surface source	First	
Ground source	Confirmation	
Well	Chlorine residual	
Gallery	pH	
Spring	Turbidity	
Treatment plant		
_		
Comments:	Sampler	

E. Forms for Sanitary Inspection

Reservoir Pump station Tank Pressure-relief box Well Gallery Spring

F. Forms for Results of Analyses (laboratory report)

Sample number Results: physical, chemical and microbiological analyses

ANNEX 3

WORKSHOP PARTICIPANTS AND REVIEWERS

WORKSHOP 1

For Spanish speakers Venue: CEPIS, Lima, Peru

Date: September 2-3, 1999

Experts attending:

Beatriz Cáceres	Advisor	Nelly Nakamatsu	SEDAPAL
Milagros Cadillo	DIGESA	Lidia Oblitas	Advisor
Enrique Calderón	Buenos Aires Univ	Norma Parra	DIGESA
Betty Chung	SUNASS	Ricardo Rojas	PAHO/CEPIS
María Luisa Esparza	PAHO/CEPIS	Felipe Solsona	PAHO/CEPIS
Denise Formaggia	S.E. São Paulo	Eduardo Stuart	DIGESA
Fred Hauchman	USEPA	Carmen Vargas	PAHO/CEPIS
Teresa Lampoglia	PROAGUA/GTZ		

WORKSHOP 2

For English speakers Venue: Radisson Hotel, Miami, USA

Date: November 18, 1999

Stephanie Adrian	USEPA	Willie Grabow	Pretoria Univ
Nicholas Ashbolt	UNSW	Fred Hauchman	USEPA
Jaimie Bartram	WHO	Guy Howard	Surrey Univ
Xavier Bonnefoy	WHO	Will Robertson	Health Canada
Enrique Calderón	Buenos Aires Univ	Mark Rogers	USEPA
Keith Christman	C.C.C USA	Felipe Solsona	PAHO/CEPIS
María Luisa Esparza	PAHO/CEPIS	Paul Taylor	Consultant
John Fawell	WRC-NSF	Terrence Thompson	WHO
Hend Galal-Gorchev	USEPA	Peter Toft	PAHO/WHO
Gerardo Galvis	CINARA	Yitchak Zohar	Israel Min. Health

Reviewers

María Luisa Esparza	PER	PAHO/CEPIS-WHO	
Carmen Vargas	PER	PAHO/CEPIS-WHO	
Fred Hauchman	USA	USEPA	
Enrique Calderón	ARG	ETOSS	
Denise Formaggia	BRA	S.E. São Paulo	
María Isabel Meca	ARG	Advisor	
Jorge Alvarez	ARG	DSA - MoH	
Javier Hernández	PER	DIGESA - MoH	
Nelly Nakamatsu	PER	SEDAPAL	
María Lucía Martelli	BRA	FNS - MoH	
Jaimie Bartram	UK	WHO	
Betty Chung	PER	SUNASS	
Gerardo Galvis	COL	CINARA	
Xavier Bonnefoy	DNK	WHO	
Teresa Lampoglia	ITA	GTZ	
Barry Lloyd	UK	Univ. Surrey	
Pablo Chaparro	COL	Vig S.P - MoH	
Ignacio Castillo	MEX	C.N.A.	
Beatriz Santamaría	MEX	Dir. Construc. & Operations GDF	
Sofía Garrido	MEX	C.I. de Recursos del Agua	
Manuel Basterrechea	GUT	Advisor	
Eugenio Lammel	ARG	Aguas Cordobesas	